Installing TensorFlow GPU version on Ubuntu 16.04

NVIDIA requirements to run TensorFlow with GPU support CUDA® Toolkit 8.0. For details, see NVIDIA's documentation. Ensure that you append the relevant Cuda pathnames to the LD_LIBRARY_PATH environment variable as described in the NVIDIA documentation. The NVIDIA drivers associated with CUDA Toolkit 8.0. cuDNN v5.1. For details, see NVIDIA's documentation. Ensure that you create the... Continue Reading →

Setup DIGITS (Deep Learning GPU Training System) on Ubuntu 16.04

DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, Torch, and Tensorflow. Since DIGITS itself is a pure Python project, installation is usually pretty trivial regardless of the platform. The difficulty comes from installing all the required dependencies for Caffe and/or Torch7 and... Continue Reading →

Setup char-rnn and torch-rnn for character level language model in Torch

Multi-layer Recurrent Neural Networks (LSTM, GRU, RNN) for character-level language models in Torch Requirements This code is written in Lua and requires Torch. So Follow the tutorial provided in my previous blog post for installing Torch. https://dwijaybane.wordpress.com/2017/07/22/installing-torch-7-deep-learning-on-ubuntu-16-04/ Lua Pre-requisite # Install most things using luarocks luarocks install torch luarocks install nn luarocks install optim luarocks... Continue Reading →

Installing Overfeat: CNN based feature extractor and classifier on Ubuntu 16.04

Step 1: Download the archive from the link below http://cilvr.cs.nyu.edu/lib/exe/fetch.php?media=overfeat:overfeat-v04-2.tgz Step 2: Extract and prepare tar -xvzf overfeat-v04-2.tgz cd overfeat python download_weights.py git pull Step 3: A simple test of the pre-compiled binaries can be done with following command #for 64bit OS ./bin/linux_64/overfeat -n 3 samples/bee.jpg Step 3: Overfeat can run without BLAS, however it... Continue Reading →

Setup Theano and Keras with CUDA support on Ubuntu 16.04

Make sure you have installed Nvidia drivers and cuda toolkit on your system. Also follow caffe setup for preliminary setup of libraries. Step 1: Install Dependencies sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose g++ libopenblas-dev liblapack-dev gfortran git Step 2: Now Install Theano sudo pip install Theano Step 3: Work around for a glibc... Continue Reading →

Installing Torch 7 deep learning on Ubuntu 16.04

Make sure you have followed caffe setup if not atleast install Prerequisite packages from that post. Step 1: install general dependencies sudo apt-get install --no-install-recommends git software-properties-common Step 2: gedit ~/.bashrc (append following lines) and restart terminal (source ~/.bashrc) export TORCH_ROOT=~/torch Step 3: Download Torch repo in that root location git clone https://github.com/torch/distro.git $TORCH_ROOT --recursive... Continue Reading →

Installing Caffe/NVcaffe on Ubuntu 16.04 with CUDA8, cuDNN, OpenCV and FFMPEG (NVENC SDK)

Before following these steps make sure you have already installed Nvidia drivers and Cuda Toolkit 8 make sure everything is updated to the latest version: sudo apt-get update sudo apt-get upgrade  let’s install all the necessary packages: sudo apt-get install build-essential make cmake cmake-curses-gui g++ tmux git pkg-config libjpeg8-dev \ libjasper-dev libpng12-dev libglew1.6-dev libgtk2.0-dev \ libavcodec-dev libavformat-dev libavutil-dev libswscale-dev libv4l-dev gfortran sudo apt-get install libtiff5-dev   # allows for easy install/uninstall of packages from source sudo apt-get install -y checkinstall We need a library for computing optimization purpose. We will use openblas and linear algebra library. sudo apt-get -y install libblas-dev libopenblas-dev libatlas-base-dev liblapack-dev gfortran Now to install boost, run: sudo apt-get install libboost-all-dev If later in the installation process you find that any of the boost related files are missing, run the following command. You can skip this one for now but won't hurt if you do it either. sudo apt-get -y install --fix-missing libboost-all-dev Go ahead and install libfaac-dev package sudo apt-get install libfaac-dev... Continue Reading →

Cuda on Backtrack 5 R2

After some pyrit problem this is guide to install cuda on Backtrack 5 R2. This guide is to configure cuda drivers and running parallel processing. Start by preparing your kernel sources for the Nvidia driver installation: root@bt:~# prepare-kernel-sources root@bt:~# cd /usr/src/linux root@bt:~# cp -rf include/generated/* include/linux/ Download Nvidia drivers according to your CPU architecture http://www.nvidia.in/Download/indexsg.aspx?lang=en-in... Continue Reading →

Blog at WordPress.com.

Up ↑

%d bloggers like this: